You have triangle ABC with points A(3, 5), B(-4, 2) and C(3, -6)

1. You want to reflect the triangle over the y - axis. Without graphing what are the coordinates of A'B'C'?

$$(x,y) \rightarrow (-x,y)$$

A'(-3,5) B'(4,2) C'(-3,-6)

2. You want to rotate the original triangle 90° clockwise. Without graphing what are the coordinates of A"B"C"?

3. You want to reflect the original triangle of the line y = -x. Without graphing what are the coordinates of A"B"C"?

$$(x,y) \rightarrow (-y,-y)$$

$$A'''(-5,-3) \quad B'''(-2,4) \quad C'''(6,-3)$$

Triangle ABC with vertices A(-1, 0), B(4, 0), and C(2, 6) is first translated by the rule $(x, y) \rightarrow (x - 6, y - 5)$, and then its image, $\Delta A'B'C'$, is translated by the rule $(x, y) \rightarrow (x + 14, y + 3)$ to get $\Delta A''B''C''$.

- a. What single translation is equivalent to the composition of these two translations?
- b. What single translation brings the second image, $\Delta A''B''C''$, back to the position of the original triangle, ΔABC ?

A
$$(-1.0)$$
 $\longrightarrow A^{(-7.-5)}$ $\longrightarrow A^{(-7,-2)}$

$$(x,y) \longrightarrow (x+8,y-2)$$

$$< 8,-2 >$$

Rotate ΔDEF 90° to create $\Delta D'E'F'$. Then reflect $\Delta D'E'F'$ over the x-axis to create $\Delta D''E''F''$.

1. Transformation Rule for ΔDEF to $\Delta D'E'F'$.

2. Coordinates of $\Delta D'E'F$?

2. Coordinates of
$$\Delta D \to F'$$

 $D(-4,2) \longrightarrow D'(-2,-4)$
 $E(-1,0) \longrightarrow E'(0,-1)$
 $F(0,0) \longrightarrow F'(-6,0)$
3. Transformation Rule for $\Delta D'E'F'to \Delta D''E''F''$

$$(x,y) \longrightarrow (x,-y)$$

4. Coordinates of
$$\Delta D''E''F''$$
?

$$D'(-2,-4) \longrightarrow D''(-2,4)$$

$$E'(0,-1) \longrightarrow E''(0,1)$$

$$F'(-6,0) \longrightarrow F'(-6,0)$$

5. What would be one single transformation rule to get ΔDEF to $\Delta D''E''F''$?

$$(x,y) \rightarrow (-\frac{y}{x}) \rightarrow (\underline{x},y)$$

$$(x,y) \rightarrow (-\frac{y}{x},-\frac{y}{y})$$

Given $\triangle ABC$ with vertices A(-1, 3), B(3, 2), C(5, 6)

- a. Reflect $\triangle ABC$ across the x-axis to create $\triangle A'B'C'$ state the rule and name the new coordinates
 - a. Rule:

$$(x,y) \longrightarrow (x,-y)$$

b. Coordinates

b. Translate $\Delta A'B'C'$ by the transformation rule $(x,y) \to (x-5,y+5)$ to create $\Delta A''B''C''$

c. What single transformation rule that takes $\triangle ABC$ to $\triangle A''B''C''$

