You have triangle ABC with points $\mathrm{A}(3.5), \mathrm{B}(-4,2)$ and $\mathrm{C}(3,-6)$

1. You want to reflect the triangle over the y - axis. Without graphing what are the coordinates of $A^{\prime} B^{\prime} C^{\prime}$?

$$
\begin{aligned}
& (x, y) \rightarrow(-x, y) \\
& A^{\prime}(-3,5) \quad B^{\prime}(4,2) \quad C^{\prime}(-3,-6)
\end{aligned}
$$

2. You want to rotate the original triangle 90° clockwise. Without graphing what are the coordinates of $\mathrm{A} " \mathrm{~B} " \mathrm{C} "$?

$$
\begin{aligned}
& (x, y) \rightarrow(y,-x) \\
& \left.A^{\prime \prime}(5,-3) \quad B^{\prime \prime}(2,4) \quad C^{\prime \prime}(-6,-3)\right)
\end{aligned}
$$

3. You want to reflect the original triangle of the line $y=-x$. Without graphing what are the coordinates of A "' B "' C "'?

$$
\begin{aligned}
& (x, y) \rightarrow(-y,-y) \\
& A^{\prime \prime \prime}(-5,-3) \quad B^{\prime \prime \prime}(-2,4) \quad C^{\prime \prime \prime}(6,-3)
\end{aligned}
$$

Composition of Transformations

Triangle $A B C$ with vertices $A(-1,0), B(4,0)$, and $C(2,6)$ is first translated by the rule
$(x, y) \rightarrow(x-6, y-5)$, and then its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$, is translated by the rule $(x, y) \rightarrow(x+\boldsymbol{k}, y+3)$ to ge $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$
a. What single translation is equivalent to the composition of these two translations?
b. What single translation dings the second image, $\triangle A^{\prime \prime} B^{\prime \prime} C_{\text {, back to the position of }}$
$A(-1,0) \xrightarrow{\text { Hie original }}$

$$
\begin{aligned}
(x, y) & \longrightarrow(x+8, y-2) \\
& <8,-2>
\end{aligned}
$$

Rotate $\triangle D E F 90^{\circ}$ to create $\Delta D^{\prime} E^{\prime} F^{\prime}$. Then reflect $\Delta D^{\prime} E^{\prime} F^{\prime}$ over the x-axis to create $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$.

1. Transformation Rule for $\triangle D E F$ to $\triangle D^{\prime} E^{\prime} F^{\prime}$.

$$
(x, y) \rightarrow(-y, x)
$$

2. Coordinates of $\Delta D^{\prime} E^{\prime} F$?

$$
\begin{aligned}
& D(-4,2) \rightarrow D^{\prime}(-2,-4) \\
& E(-1,0) \rightarrow E^{\prime}(0,-1) \\
& F(0,6) \rightarrow F^{\prime}(-6,0)
\end{aligned}
$$

3. Transformation Rule for $\Delta D^{\prime} E^{\prime} F^{\prime}$ to $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ $(x, y) \longrightarrow(x,-y)$
4. Coordinates of $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime} ?$
$D^{j}(-2 .-4)$
$E^{\prime}(0,-1) \longrightarrow E^{01}(0,1)$

$F^{\prime}(-6,0) \longrightarrow F^{\prime}(-6,0)$
5. What would be one single transformation rule to get $\triangle D E F$ to $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$?

$$
\begin{aligned}
& (x, y) \rightarrow(-y, x) \rightarrow\left(x_{1},-y\right) \\
& *(x, y) \longrightarrow(-y,-x)
\end{aligned}
$$

Given $\triangle A B C$ with vertices $A(-1,3), B(3,2), C(5,6)$
a. Reflect $\triangle A B C$ across the x-axis to create $\Delta A^{\prime} B^{\prime} C^{\prime}$ state the rule and name the new coordinates
a. Rule:

$$
(x, y) \rightarrow(x,-y)
$$

b. Coordinates
$A^{\prime}(-1,-3)$
$B^{\prime}(3,-2)$

$$
e^{\prime}(5,-6)
$$

b. Translate $\Delta A^{\prime} B^{\prime} C^{\prime}$ by the transformation rule $(x, y) \rightarrow(x-5, y+5)$ to create $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$
A" $(-6,2)$
$C^{\prime \prime}(0,-1)$
$B^{n}(-2,3)$
c. What single transformation rule that takes $\triangle A B C$ to $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ $(x, y) \rightarrow(x,-y) \rightarrow(x-5, y+5)$

$$
(x, y) \rightarrow(x-5,-y+5)
$$

